254 research outputs found

    Risk Mitigation for ITER by a Prolonged and Joint International Operation of JET

    Get PDF
    Prolonged operation of the Joint European Torus (JET) in a set-up involving all ITER partners will be beneficial for ITER. Experiments at JET with its ITER-like wall and using a D–T plasma mixture will help to mitigate risks in the ITER research plan. Training of the ITER operators, technicians and engineers at JET will safe valuable time when ITER comes into operation. Moreover, the way in which the future ITER experiments will be organized can already be experienced at JET, by imposing a similar organisational structure. This paper will present arguments in favour of an extension of JET and additionally briefly discuss a number of enhancements that will make experiments on JET even more relevant for ITER.EURATOM 63305

    Short-and long-range energy strategies for Japan and the world after the Fukushima nuclear accident

    Get PDF
    ABSTRACT: The accident at the Fukushima Dai-ichi nuclear power station in 2011 has caused profound effects on energy policies in Japan and worldwide. This is particularly because it occurred at the time of the growing awareness of global warming forcing measures towards decarbonised energy production, namely the use of fossil fuels has to be drastically reduced from the present level of more than 80% by 2050. A dilemma has now emerged because nuclear power, a CO 2 -free technology with proven large-scale energy production capability, lost confidence in many societies, especially in Japan and Germany. As a consequence, there is a world-wide effort now to expand renewable energies (REs), specifically photo-voltaic (PV) and wind power. However, the authors conjecture that PV and wind power can provide only up to a 40% share of the electricity production as long as sufficient storage is not available. Beyond this level, the technological (high grid power) and economic problems (large surplus production) grow. This is the result of the analysis of the growing use of REs in the electricity systems for Germany and Japan. The key element to overcome this situation is to develop suitable energy storage technologies. This is particularly necessary when electricity will become the main energy source because also transportation, process heat and heating, will be supplied by it. Facing the difficulty in replacing all fossil fuels in all countries with different technology standards, a rapid development of carbon capture and storage (CCS) might also be necessary. Therefore, for the short-range strategy up to 2050, all meaningful options have to be developed. For the long-range strategy beyond 2050, new energy sources (such as thermonuclear fusion, solar fuels and nuclear power -if inherently safe concepts will gain credibility of societies again), and large-scale energy storage systems based on novel concepts (such as large-capacity batteries and hydrogen) is required. It is acknowledged that the prediction of the future is difficult; therefore, the only insurance in this situation is by intensified research into all viable options

    Self-organized Te redistribution during driven reconnection processes in high-temperature plasmas

    Get PDF
    Two-dimensional (2D) images of electron temperature fluctuations with high temporal and spatial resolution were employed to study the sawtooth oscillation in Toroidal EXperiment for Technology Oriented Research [S. S. Abdallaev et al., Nucl. Fusion 43, 299 (2003)] tokamak plasmas. The new findings are: (1) 2D images revealed that the reconnection is localized and permitted the determination of the physical dimensions of the reconnection zone in the poloidal and toroidal planes. (2) The combination of a pressure bulge due to finite pressure effects or a kink instability accompanied with a sharp pressure point leads to an "X-point" reconnection process. (3) Reconnection can take place anywhere along the q similar to 1 rational magnetic surface (both high- and low-field sides). (4) Heat flow from the core to the outside of the inversion radius during the reconnection time is through the finite opening on the poloidal and toroidal planes and the flow is highly collective. These new findings are compared with the characteristics of various theoretical models and experimental results for the study of the sawtooth oscillation in tokamak plasmas. (c) 2006 American Institute of Physics

    EUV spectra of highly-charged ions W54+^{54+}-W63+^{63+} relevant to ITER diagnostics

    Full text link
    We report the first measurements and detailed analysis of extreme ultraviolet (EUV) spectra (4 nm to 20 nm) of highly-charged tungsten ions W54+^{54+} to W63+^{63+} obtained with an electron beam ion trap (EBIT). Collisional-radiative modelling is used to identify strong electric-dipole and magnetic-dipole transitions in all ionization stages. These lines can be used for impurity transport studies and temperature diagnostics in fusion reactors, such as ITER. Identifications of prominent lines from several W ions were confirmed by measurement of isoelectronic EUV spectra of Hf, Ta, and Au. We also discuss the importance of charge exchange recombination for correct description of ionization balance in the EBIT plasma.Comment: 11 pages, 4 figure

    Spherical probes at ion saturation in E × B fields

    Get PDF
    The ion saturation current to a spherical probe in the entire range of ion magnetization is computed with SCEPTIC3D, a newthree-dimensional version of the kinetic code SCEPTIC designed to study transverse plasma flows. Results are compared with prior two-dimensional calculations valid in the magneticfree regime (Hutchinson 2002 Plasma Phys. Control. Fusion 44 1953), and with recent semi-analytic solutions to the strongly magnetized transverse Mach probe problem (Patacchini and Hutchinson 2009 Phys. Rev. E 80 036403). At intermediate magnetization (ion Larmor radius close to the probe radius) the plasma density profiles show a complex three-dimensional structure that SCEPTIC3D can fully resolve, and, contrary to intuition, the ion current peaks provided the ion temperature is low enough. Our results are conveniently condensed in a single factor M[subscript c], function of ion temperature and magnetic field only, providing the theoretical calibration for a transverse Mach probe with four electrodes placed at 45◩ to the magnetic field in a plane of flow and magnetic field
    • 

    corecore